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Effect of nonstationarities on detrended fluctuation analysis
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Detrended fluctuation analysis~DFA! is a scaling analysis method used to quantify long-range power-law
correlations in signals. Many physical and biological signals are ‘‘noisy,’’ heterogeneous, and exhibit different
types of nonstationarities, which can affect the correlation properties of these signals. We systematically study
the effects of three types of nonstationarities often encountered in real data. Specifically, we consider nonsta-
tionary sequences formed in three ways:~i! stitching together segments of data obtained from discontinuous
experimental recordings, or removing some noisy and unreliable parts from continuous recordings and stitch-
ing together the remaining parts—a ‘‘cutting’’ procedure commonly used in preparing data prior to signal
analysis;~ii ! adding to a signal with known correlations a tunable concentration of random outliers or spikes
with different amplitudes; and~iii ! generating a signal comprised of segments with different properties—e.g.,
different standard deviations or different correlation exponents. We compare the difference between the scaling
results obtained for stationary correlated signals and correlated signals with these three types of nonstationari-
ties. We find that introducing nonstationarities to stationary correlated signals leads to the appearance of
crossovers in the scaling behavior and we study how the characteristics of these crossovers depend on~a! the
fraction and size of the parts cut out from the signal,~b! the concentration of spikes and their amplitudes~c! the
proportion between segments with different standard deviations or different correlations and~d! the correlation
properties of the stationary signal. We show how to develop strategies for preprocessing ‘‘raw’’ data prior to
analysis, which will minimize the effects of nonstationarities on the scaling properties of the data, and how to
interpret the results of DFA for complex signals with different local characteristics.

DOI: 10.1103/PhysRevE.65.041107 PACS number~s!: 05.40.2a
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I. INTRODUCTION

In recent years, there has been growing evidence indi
ing that many physical and biological systems have no ch
acteristic length scale and exhibit long-range power-law c
relations. Traditional approaches such as the power-spec
and correlation analysis are suited to quantify correlation
stationary signals@1,2#. However, many signals that are ou
puts of complex physical and biological systems a
nonstationary—the mean, standard deviation, and higher
ments, or the correlation functions are not invariant un
time translation@1,2#. Nonstationarity, an important aspect
complex variability, can often be associated with differe
trends in the signal or heterogeneous segments~patches!
with different local statistical properties. To address t
problem, detrended fluctuation analysis~DFA! was devel-
oped to accurately quantify long-range power-law corre
tions embedded in a nonstationary time series@3,4#. This
method provides a single quantitative parameter—the sca
exponenta—to quantify the correlation properties of a si
nal. One advantage of the DFA method is that it allows
detection of long-range power-law correlations in noisy s
nals with embedded polynomial trends that can mask the
correlations in the fluctuations of a signal. The DFA meth
has been successfully applied to research fields such as
@3,5–16#, cardiac dynamics@17–37#, human gait@38#, me-
teorology @39#, climate temperature fluctuations@40–42#,
river flow and discharge@43,44#, neural receptors in biologi
cal systems@45#, and economics@46–58#. The DFA method
may also help identify different states of the same sys
with different scaling behavior—e.g., the scaling exponena
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for heartbeat intervals is different for healthy and sick in
viduals @17,28# as well as for waking and sleeping stat
@23,33#.

To understand the intrinsic dynamics of a given system
is important to analyze and correctly interpret its output s
nals. One of the common challenges is that the scaling
ponent is not always constant~independent of scale! and
crossovers often exist—i.e., the value of the scaling expon
a differs for different ranges of scales@17,18,23,59,60#. A
crossover is usually due to a change in the correlation pr
erties of the signal at different time or space scales, thoug
can also be a result of nonstationarities in the signal. A rec
work considered different types of nonstationarities asso
ated with different trends~e.g., polynomial, sinusoidal, an
power-law trends! and systematically studied their effect o
the scaling behavior of long-range correlated signals@61#.
Here we consider the effects of three other types of non
tionarities, which are often encountered in real data or re
from ‘‘standard’’ data preprocessing approaches.

(a) Signals with segments removed. First we consider a
type of nonstationarity caused by discontinuities in signa
Discontinuities may arise from the nature of experimen
recordings, e.g., stock exchange data are not recorded du
the nights, weekends, and holidays@46–53#. Alternatively,
discontinuities may be caused by the fact that some no
and unreliable portions of continuous recordings must be
carded, as often occurs when analyzing physiological sign
@17–37#. In this case, a common preprocessing procedur
to cut out the noisy, unreliable parts of the recording a
stitch together the remaining informative segments bef
any statistical analysis is performed. One immediate prob
©2002 The American Physical Society07-1
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is how such cutting procedure will affect the scaling prop
ties of long-range correlated signals. A careful considera
should be made when interpreting results obtained from s
ing analysis, so that an accurate estimate of the true cor
tion properties of the original signal may be obtained.

(b) Signals with random spikes. A second type of nonsta
tionarity is due to the existence of spikes in data, which
very common in real life signals@17–38#. Spikes may arise
from external conditions that have little to do with the intri
sic dynamics of the system. In this case, we must distingu
the spikes from normal intrinsic fluctuations in the system
output and filter them out when we attempt to quantify c
relations. Alternatively, spikes may arise from the intrins
dynamics of the system, rather than being an epiphenome
of external conditions. In this second case, careful consi
ations should be made as to whether the spikes shoul
filtered out when estimating correlations in the signal, sin
such ‘‘intrinsic’’ spikes may be related to the properties
the noisy fluctuations. Here, we consider only the simp
case, namely, when the spikes are independent of the
tuations in the signal. The problem is how spikes affect
scaling behavior of correlated signals, e.g., what kind
crossovers they may possibly cause. We also demonstra
what extent features of the crossovers depend on the s
tical properties of the spikes. Furthermore, we show how
recognize if a crossover indeed indicates a transition fr
one type of underlying correlations to a different type, or
the crossover is due to spikes without any transition in
dynamical properties of the fluctuations.

(c) Signals with different local behavior. A third type of
nonstationarity is associated with the presence of segm
in a signal that exhibit different local statistical propertie
e.g., different local standard deviations or different local c
relations. Some examples include the following:~a! 24-h
records of heart rate fluctuations are characterized by
ments with larger standard deviation during stress and ph
cal activity and segments with smaller standard deviat
during rest@19#; ~b! studies of DNA show that coding an
noncoding regions are characterized by different types
correlations@5,8#; ~c! brain wave analysis of different slee
stages~rapid eye movement sleep, light sleep, and de
sleep! indicates that the signal during each stage may h
different correlation properties@62#; ~d! heartbeat signals
during different sleep stages exhibit different scaling prop
ties @33#. For such complex signals, results from scali
analysis often reveal a very complicated structure. It i
challenge to quantify the correlation properties of these
nals. Here, we take a first step toward understanding
scaling behavior of such signals.

We study these three types of nonstationarities embed
in correlated signals. We apply the DFA method to station
correlated signals and identical signals with artificially im
posed nonstationarities, and compare the difference in
scaling results.~i! We find that cutting segments from a si
nal and stitching together the remaining parts does not af
the scaling for positively correlated signals. However, t
cutting procedure strongly affects anticorrelated sign
leading to a crossover from an anticorrelated regime~at
small scales! to an uncorrelated regime~at large scales!. ~ii !
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For the correlated signals with superposed random spi
we find that the scaling behavior is a superposition of
scaling of the signal and the apparent scaling of the spik
We analytically prove this superposition relation by introdu
ing asuperposition rule. ~iii ! For the case of complex signa
comprised of segments with different local properties,
find that their scaling behavior is a superposition of the sc
ing of the different components—each component contain
only the segments exhibiting identical statistical properti
Thus, to obtain the scaling properties of the signal, we n
only to examine the properties of each component—a m
simpler task than analyzing the original signal.

The layout of the paper is as follows: In Sec. II, we d
scribe how we generate signals with desired long-range
relation properties and introduce the DFA method to quan
these correlations. In Sec. III, we compare the scaling pr
erties of correlated signals before and after removing so
segments from the signals. In Sec. IV, we consider the ef
of random spikes on correlated signals. We show that
superposition of spikes and signals can be explained b
superposition rule derived in Appendix A. In Sec. V, w
study signals comprised of segments with different local
havior. We systematically examine all resulting crossove
their conditions of existence, and their typical characteris
associated with the different types of nonstationarities.
summarize our findings in Sec. VI.

II. METHOD

Using a modified Fourier filtering method@63#, we gen-
erate stationary uncorrelated, correlated, and anticorrel
signalsu( i ) ( i 51,2,3, . . . ,Nmax) with a standard deviation
s51. This method consists of the following steps.

~a! First, we generate an uncorrelated and Gaussian
tributed sequenceh( i ) and calculate the Fourier transform
coefficientsh(q).

~b! The desired signalu( i ) must exhibit correlations tha
are defined by the form of the power spectrum

S~q!5^u~q!u~2q!&;q2(12g), ~1!

where u(q) are the Fourier transform coefficients ofu( i )
and g is the correlation exponent. Thus, we generateu(q)
using the following transformation:

u~q!5@S~q!#1/2h~q!, ~2!

whereS(q) is the desired power spectrum in Eq.~1!.
~c! We calculate the inverse Fourier transform ofu(q) to

obtainu( i ).
We use the stationary correlated signalu( i ) to generate

signals with different types of nonstationarities and apply
DFA method@3# to quantify correlations in these nonstatio
ary signals.

Next, we briefly introduce the DFA method, which in
volves the following steps@3#.

~i! Starting with a correlated signalu( i ), where i
51, . . . ,Nmax, andNmax is the length of the signal, we firs
integrate the signalu( i ) and obtainy(k)[( i 51

k @u( i )2^u&#,
where^u& is the mean.
7-2
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EFFECT OF NONSTATIONARITIES ON DETRENDED . . . PHYSICAL REVIEW E65 041107
~ii ! The integrated signaly(k) is divided into boxes of
equal lengthn.

~iii ! In each box of lengthn, we fit y(k), using a polyno-
mial function of orderl, which represents thetrend in that
box. They coordinate of the fit line in each box is denoted
yn(k) ~see Fig. 1, where linear fit is used!. Since we use a
polynomial fit of orderl, we denote the algorithm as DFA-l .

~iv! The integrated signaly(k) is detrended by subtractin
the local trendyn(k) in each box of lengthn.

~v! For a given box sizen, the root-mean-square~rms!
fluctuation for this integrated and detrended signal is ca
lated:

F~n![A 1

Nmax
(
k51

Nmax

@y~k!2yn~k!#2. ~3!

~vi! The above computation is repeated for a broad ra
of scales~box sizesn) to provide a relationship betwee
F(n) and the box sizen.

A power-law relation between the average root-me
square fluctuation functionF(n) and the box sizen indicates
the presence of scaling:F(n);na. The fluctuations can be
characterized by a scaling exponenta, a self-similarity pa-
rameter that represents the long-range power-law correla
properties of the signal. Ifa50.5, there is no correlation an
the signal is uncorrelated~white noise!; if a,0.5, the signal
is anticorrelated; ifa.0.5, the signal is correlated@64#.

We note that for anticorrelated signals, the scaling ex
nent obtained from the DFA method overestimates the
correlations at small scales@61#. To avoid this problem, one
needs first to integrate the original anticorrelated signal
then apply the DFA method@61#. The correct scaling expo
nent can thus be obtained from the relation betweenn and
F(n)/n @instead ofF(n)#. In the following sections, we firs
integrate the signals under consideration, then apply DF
to remove linear trends in these integrated signals. In orde
provide a more accurate estimate ofF(n), the largest box
sizen we use isNmax/10, whereNmax is the total number of
points in the signal.

FIG. 1. ~a! The correlated signalu( i ). ~b! The integrated signa
y(k)5( i 51

k @u( i )2^u&#. The vertical dotted lines indicate a box o
sizen5100, the solid straight line segments are the estimated lin
‘‘trend’’ in each box by least-squares fit.
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We compare the results of the DFA method obtained fr
the nonstationary signals with those obtained from the
tionary signalu( i ) and examine how the scaling properti
of a detrended fluctuation functionF(n) change when intro-
ducing different types of nonstationarities.

III. SIGNALS WITH SEGMENTS REMOVED

In this section, we study the effect of nonstationar
caused by removing segments of a given length from a sig
and stitching together the remaining parts—a ‘‘cutting’’ pr
cedure often used in preprocessing data prior to analysis
address this question, we first generate a stationary corre
signalu( i ) ~see Sec. II! of lengthNmax and a scaling expo-
nent a, using the modified Fourier filtering method@63#.
Next, we divide this signal intoNmax/W nonoverlapping
segments of sizeW and randomly remove some of thes
segments. Finally, we stitch together the remaining segm
in the signalu( i ) @Fig. 2~a!#, thus obtaining a surrogate non
stationary signal, which is characterized by three paramet
the scaling exponenta, the segment sizeW, and the fraction
of the signalu( i ), which is removed.

We find that the scaling behavior of such a nonstation
signal strongly depends on the scaling exponenta of the
original stationary correlated signalu( i ). As illustrated in
Fig. 2~b!, for a stationaryanticorrelatedsignal witha50.1,
the cutting procedure causes a crossover in the scaling
havior of the resultant nonstationary signal. This crosso
appears even when only 1% of the segments are cut ou
scales larger than the crossover scalen3 , the rms fluctuation
function behaves asF(n);n0.5, which means an uncorre
lated randomness, i.e., the anticorrelation has been c
pletely destroyed in this regime. For all anticorrelated sign
with exponenta,0.5, we observe a similar crossover beha
ior. This result is surprising, since researchers often take
granted that a cutting procedure before analysis does
change the scaling properties of the original signal. O
simulation shows that this assumption is not true, at least
anticorrelated signals.

Next, we investigate how the two parameters—the s
ment sizeW and the fraction of points cut out from th
signal—control the effect of the cutting procedure on t
scaling behavior of anticorrelated signals. For a fixed size
the segments (W520), we find that the crossover scalen3

decreaseswith the increasing fraction of the cut out seg-
ments @Fig. 2~c!#. Furthermore, for anticorrelated signa
with small values of the scaling exponenta, e.g.,a50.1 and
a50.2, we find thatn3 and the fraction of the cut out seg
ments display an approximate power-law relationship. Fo
fixed fraction of the removed segments, we find that
crossover scalen3 increaseswith increasingsegment sizeW
@Fig. 2~d!#. To minimize the effect of the cutting procedur
on the correlation properties, it is advantageous to
smaller number of segments of larger sizeW. Moreover, if
the segments that need to be removed are too close~e.g., at a
distance shorter than the size of the segments!, it may be
advantageous to cut out both the segments and a part o
signal between them. This will effectively increase the s
of the segmentW without substantially changing the fractio

ar
7-3
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CHEN, IVANOV, HU, AND STANLEY PHYSICAL REVIEW E 65 041107
FIG. 2. Effects of the ‘‘cutting’’ procedure on the scaling behavior of stationary correlated signals.Nmax5220 is the number of points in
the signals~standard deviations51) andW is the size of the cut out segments.~a! A stationary signal with 10% of the points removed. Th
removed parts are presented by shaded segments of sizeW520 and the remaining parts are stitched together.~b! Scaling behavior of
nonstationary signals obtained from an anticorrelated stationary signal~scaling exponenta,0.5) after the cutting procedure. A crossov
from anticorrelated to uncorrelated (a50.5) behavior appears at scalen3 . The crossover scalen3 decreases by increasing the fraction
points removed from the signal. We determinen3 based on the differenceD between the logarithm ofF(n)/n for the original stationary
anticorrelated signal (a50.1) and the nonstationary signal with cut out segments:n3 is the scale at whichD>0.04. Dependence of the
crossover scalen3 on the fraction~c! and on the sizeW ~d! of the cutout segments for anticorrelated signals with different scaling expon
a. ~e! Cutting procedure applied to correlated signals (a.0.5). In contrast to~b!, no discernible effect on the scaling behavior is observ
for different values of the scaling exponenta, even when up to 50% of the points in the signals are removed.
th
e
ie

aw

in
he
a
e

ing
e
the

f
re.
ent

ents
of the signal that is cut out, leading to an increase in
crossover scalen3 . Such a strategy would minimize th
effect of this type of nonstationarity on the scaling propert
of the data. For small values of the scaling exponenta (a
,0.25), we find thatn3 and W follow power-law relation-
ships@Fig. 2~d!#. The reason we do not observe a power-l
relationship betweenn3 and W and betweenn3 and the
fraction of cut out segments, for the values of the scal
exponenta close to 0.5, may be due to the fact that t
crossover regime becomes broader when it separates sc
regions with similar exponents, thus leading to an unc
tainty in definingn3 . For a fixedW and a fixed fraction of
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the removed segments@see Figs. 2~c! and 2~d!#, we observe
that n3 increases with the increasing value of the scal
exponenta, i.e., the effect of the cutting procedure on th
scaling behavior decreases when the anticorrelations in
signal are weaker (a closer to 0.5).

Finally, we consider the case of correlated signalsu( i )
with 1.5.a.0.5. Surprisingly, we find that the scaling o
correlated signals is not affected by the cutting procedu
This observation remains true independently of the segm
size W—from very small W(55) up to very largeW
(55000) segments—even when up to 50% of the segm
are removed from a signal withNmax;106 points@Fig. 2~e!#.
7-4
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IV. SIGNALS WITH RANDOM SPIKES

In this section, we consider nonstationarity related to
presence of random spikes in the data and we study the e
of this type of nonstationarity on the scaling properties
correlated signals. First, we generate surrogate nonstatio
signals by adding random spikes to a stationary correla
signalu( i ) @see Sec. II and Figs. 3~a!–3~c!#.

We find that the correlation properties of the nonstatio
ary signal with spikes depend on the scaling exponenta of
the stationary signal and the scaling exponentasp of the
spikes. When uncorrelated spikes (asp50.5) are added to a
correlated or anticorrelated stationary signal@Figs. 3~d! and
3~e!#, we observe a change in the scaling behavior wit
crossover at a characteristic scalen3 . For anticorrelated sig-
nals (a,0.5) with random spikes, we find that at scal
smaller thann3 , the scaling behavior is close to that o
served for the stationary anticorrelated signal without spik
while for scales larger thann3 , there is a crossover to ran
dom behavior. In the case of correlated signals (a.0.5) with
random spikes, we find a different crossover from uncor
lated behavior at small scales, to correlated behavior at l
scales with an exponent close to the exponent of the orig
stationary correlated signal. Moreover, we find that spi
with a very small amplitude can cause strong crossover
the case of anticorrelated signals, while for correlated s
nals, identical concentrations of spikes with a much lar
amplitude do not affect the scaling. Based on these findin
we conclude that uncorrelated spikes with a sufficiently la
amplitude can affect the DFA results at large scales for
nals with a,0.5 and at small scales for signals witha
.0.5.

To better understand the origin of this crossover behav
we first study the scaling of the spikes only@see Fig. 3~b!#.
By varying the concentrationp(0<p<1) and the amplitude
Asp of the spikes in the signal, we find that for the gene
case when the spikes may be correlated, the rms fluctua
function behaves as

Fsp~n!/n5k0ApAspn
asp, ~4!

wherek0 is a constant andasp is the scaling exponent of th
spikes.

Next, we investigate the analytical relation between
DFA results obtained from the original correlated signal,
spikes, and the superposition of signal and spikes. Since
original signal and the spikes are not correlated, we can
a superposition rule~see@61# and Appendix A! to derive the
rms fluctuation functionF(n)/n for the correlated signa
with spikes,

@F~n!/n#25@Fh~n!/n#21@Fsp~n!/n#2, ~5!

where Fh(n)/n and Fsp(n)/n are the rms fluctuation
functions for the signal and the spikes, respective
To confirm this theoretical result, we calcula
A@Fh(n)/n#21@Fsp(n)/n#2 @see Figs. 3~d! and 3~e!# and
find that Eq.~5! is remarkably consistent with our exper
mental observations.
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FIG. 3. Effects of random spikes on the scaling behavior
stationary correlated signals.~a! An example of an anticorrelated
signal u( i ) with scaling exponenta50.2, Nmax5220, and stan-
dard deviations51. ~b! A series of uncorrelated spikes (asp

50.5) at 5% randomly chosen positions~concentrationp50.05)
and with uniformly distributed amplitudesAsp in the interval
@24,4#. ~c! Superposition of the signals in~a! and ~b!. ~d!
Scaling behavior of an anticorrelated signalu( i ) (a50.2) with
spikes (Asp51, p50.05, asp50.5). For n,n3 , F(n)/n
'Fh(n)/n;na, whereFh(n)/n is the scaling function of the sig
nal u( i ). For n.n3 , F(n)/n'Fsp(n)/n;nasp. ~e! Scaling be-
havior of a correlated signalu( i )(a50.8) with spikes (Asp

510, p50.05, asp50.5). For n,n3 , F(n)/n'Fsp(n)/n
;nasp. For n.n3 , F(n)/n'Fh(n)/n;na. Note that whena
5asp50.5, there is no crossover.
7-5
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Using the superposition rule, we can also theoretica
predict the crossover scalen3 as the intercept betwee
Fh(n)/n and Fsp(n)/n, i.e., whereFh(n3)5Fsp(n3). We
find that

n35SApAsp

k0

b0
D 1/(a2asp)

, ~6!

since the rms fluctuation functions for the signal a
the spikes are Fh(n)/n5b0na @61# and Fsp(n)/n
5k0ApAspn

asp @Eq. ~4!#, respectively. This result predict
the position of the crossover depending on the parame
defining the signal and the spikes.

Our result derived from the superposition rule can be u
ful to distinguish two cases:~i! the correlated stationary sig
nal and the spikes are independent~e.g., the case when
correlated signal results from the intrinsic dynamics of
system while the spikes are due to external perturbatio!
and ~ii ! the correlated stationary signal and the spikes
dependent~e.g., both the signal and the spikes arise from
intrinsic dynamics of the system!. In the latter case, the iden
tity in the superposition rule is not correct~see Appendix A!.

V. SIGNALS WITH DIFFERENT LOCAL BEHAVIOR

Next, we study the effect of nonstationarities on comp
patchy signals where different segments show different lo
behavior. This type of nonstationarity is very common in re
world data @5,8,19,33,62#. Our discussion of signals com
posed of only two types of segments is limited to two sim
cases:~a! different standard deviations and~b! different cor-
relations.

A. Signals with different local standard deviations

Here we consider nonstationary signals comprised of s
ments with the same local scaling exponent, but differ
local standard deviations. We first generate a stationary
related signalu( i ) ~see Sec. II! with fixed standard deviation
s151. Next, we divide the signalu( i ) into nonoverlapping
segments of sizeW. We then randomly choose a fractionp of
the segments and amplify the standard deviation of the si
in these segments,s254 @Fig. 4~a!#. Finally, we normalize
the entire signal to global standard deviations51 by
dividing the value of each point of the signal b
A(12p)s1

21ps2
2.

For nonstationaryanticorrelated signals (a,0.5) with
segments characterized by two different values of the s
dard deviation, we observe a crossover at scalen3 @Fig.
4~b!#. For small scalesn,n3 , the behavior is anticorrelate
with an exponent equal to the scaling exponenta of the
original stationary anticorrelated signalu( i ). For large scales
n.n3 , we find a transition to random behavior with exp
nent 0.5, indicating that the anticorrelations have been
stroyed. The dependence of crossover scalen3 on the frac-
tion p of segments with larger standard deviation is shown
Fig. 4~c!. The dependence is not monotonic because fop
50 and p51, the local standard deviation is consta
throughout the signal, i.e., the signal becomes stationary
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FIG. 4. Scaling behavior of nonstationary correlated sign
with different local standard deviations.~a! Anticorrelated signal
(a50.1) with standard deviations151 and amplified segment
with standard deviations254. The size of each segment isW
520 and the fraction of the amplified segments isp50.1 from the
total length of the signal (Nmax5220). ~b! Scaling behavior of the
signal in ~a! for a different fractionp of the amplified segments
~after normalization of the globe standard deviation to unity!. A
crossover from anticorrelated behavior (a50.1) at small scales to
random behavior (a50.5) at large scales is observed.~c! Depen-
dence of the crossover scalen3 on the fractionp of amplified
segments for the signal in~a!. n3 is determined from the difference
D of log10@F(n)/n# between the nonstationary signal with amp
fied segments and the original stationary signal. Here we cho
D50.04. ~d! Scaling behavior of nonstationary signals obtain
from correlated stationary signals (1.a.0.5) with standard devia-
tion s151 for a different fraction of the amplified segments wi
s254. No difference in the scaling is observed, compared to
original stationary signal.
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thus there is no crossover. Note the asymmetry in the va
of n3—a much smaller value ofn3 for p50.05 compared to
p50.95 @see Figs. 4~b! and 4~c!#. This result indicates tha
very few segments with a large standard deviation~compared
to the rest of the signal! can have a strong effect on th
anticorrelations in the signal. Surprisingly, the same fract
of segments with a small standard deviation~compared to the
rest of the signal! does not affect the anticorrelations up
relatively large scales.

For nonstationarycorrelated signals (a.0.5) with seg-
ments characterized by two different values of the stand
deviation, we surprisingly find no difference in the scaling
F(n)/n, compared to the stationary correlated signals w
constant standard deviation@Fig. 4~d!#. Moreover, this obser-
vation remains valid for different sizes of the segmentsW
and for different values of the fractionp of segments with
larger standard deviation. We note that in the limiting case
very large values ofs2 /s1, when the values of the signal i
the segments with standard deviations1 could be considered
close to ‘‘zero,’’ the results in Fig. 4~d! do not hold and we
observe a scaling behavior similar to that of the signal in F
5~c! ~see following section!.

B. Signals with different local correlations

Next we consider nonstationary signals that consist
segments with identical standard deviations (s51) but dif-
ferent correlations. We obtain such signals using the follo
ing procedure:~1! generate two stationary signalsu1( i ) and
u2( i ) ~see Sec. II! of identical lengthNmax and with different
correlations, characterized by scaling exponentsa1 anda2;
~2! divide the signalsu1( i ) and u2( i ) into nonoverlapping
segments of sizeW; ~3! randomly replace a fractionp of the
segments in signalu1( i ) with the corresponding segments
u2( i ). In Fig. 5~a!, we show an example of such a compl
nonstationary signal with different local correlations. In th
section, we study the behavior of the rms fluctuation funct
F(n)/n. We also investigateF(n)/n separately for each
component of the nonstationary signal~which consists only
of the segments with identical local correlations! and suggest
an approach, based on the DFA results, to recognize s
complex structures in real data.

In Fig. 5~d!, we present the DFA result on such a nons
tionary signal, composed of segments with two differe
types of local correlations characterized by exponentsa1
50.1 anda250.9. We find that at small scales the slope
F(n)/n is close toa1 and at large scales the slope a
proachesa2 with a bump in the intermediate scale regim
This is not surprising sincea1,a2 and thusF(n)/n is
bound to have a small slope (a1) at small scales and a larg
slope (a2) at large scales. However, it is surprising that
though 90% of the signal consists of segments with sca
exponenta1 , F(n)/n deviates at small scales (n'10)
from the behavior expected for an anticorrelated signalu( i )
with exponenta1 @see, e.g., the solid line in Fig. 2~b!#. This
suggests that the behavior ofF(n)/n for a nonstationary sig-
nal comprised of mixed segments with different correlatio
is dominated by segments exhibiting higher positive corre
tions even in the case when their relative fraction in
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signal is small. This observation is pertinent to real data s
as~i! heart rate recordings during sleep where different s
ments corresponding to different sleep stages exhibit dif
ent types of correlations@33#, ~ii ! DNA sequences including
coding and noncoding regions characterized by different c
relations@5,8,16#, and~iii ! brain wave signals during differ
ent sleep stages@62#.

To better understand the complex behavior ofF(n)/n for
such nonstationary signals, we study their components s
rately. Each component is composed only of those segm
in the original signal that are characterized by identical c
relations, while the segments with different correlations
substituted with zeros@see Figs. 5~b! and 5~c!#. Since the two
components of the nonstationary signal in Fig. 5~a! are inde-
pendent, based on the superposition rule@Eq. ~5!#, we expect
that the rms fluctuation functionF(n)/n will behave as
A@F1(n)/n#21@F2(n)/n#2, whereF1(n)/n andF2(n)/n are
the rms fluctuation functions of the components in Figs. 5~b!

FIG. 5. Scaling behavior of a nonstationary signal with tw
different scaling exponents.~a! Nonstationary signal~length Nmax

5220, standard deviations51), which is a mixture of correlated
segments with exponenta150.1 ~90% of the signal! and segments
with exponenta250.9 ~10% of the signal!. The segment size is
W520, ~b! the 90% component containing all segments witha1

50.1 and the remaining segments~with a250.9) are replaced by
zero, ~c! the 10% component containing all segments witha2

50.9 and the remaining segments~with a150.1) are replaced by
zero,~d! DFA results for the mixed signal in~a!, for the individual
components in~b! and ~c!, and our prediction obtained from th
superposition rule.
7-7
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and 5~c!, respectively. We find a remarkable agreement
tween the superposition rule prediction and the result of
DFA method obtained directly from the mixed signal@Fig.
5~d!#. This finding helps us understand the relation betwe
the scaling behavior of the mixed nonstationary signal and
components.

Information on the effect of such parameters as the s
ing exponentsa1 and a2, the size of the segmentsW, and
their relative fractionp on the scaling behavior of the com
ponents provides insight into the scaling behavior of
original mixed signal. When the original signal comes fro
real data, its composition isa priori unknown. A first step is
to ‘‘guess’’ the type of correlations~exponentsa1 and a2)
present in the signal, based on the scaling behavior
F(n)/n at small and large scales@Fig. 5~d!#. A second step is
to determine the parametersW andp for each component by
matching the scaling result from the superposition rule w
the original signal. Hence in the following sections, we foc
on the scaling properties of the components and how t
change withp, a, andW.

1. Dependence on the fraction of segments

First, we study how the correlation properties of the co
ponents depend on the fractionp of the segments with iden
tical local correlations. For components containing segme
with anticorrelations (0,a,0.5) and fixed sizeW @Fig.
5~b!#, we find a crossover to random behavior (a50.5) at
large scales, which becomes more pronounced~shift to
smaller scales! when the fractionp decreases@Fig. 6~a!#. At
smallscales (n<W), the slope ofF(n)/n is identical to that
expected for a stationary signalu( i ) ~i.e., p51) with the
same anticorrelations@solid line in Fig. 6~a!#. Moreover, we
observe a vertical shift inF(n)/n to lower values when the
fraction p of nonzero anticorrelated segments decreases.
find that at small scales, after rescalingF(n)/n by Ap, all
curves collapse on the curve for the stationary anticorrela
signal u( i ) @Fig. 6~a!#. Since at small scales (n<W) the
behavior ofF(n)/n does not depend on the segment sizeW,
this collapse indicates that the vertical shift inF(n)/n is due
only to the fractionp. Thus, to determine the fractionp of
anticorrelated segments in a nonstationary signal@mixture of
anticorrelated and correlated segments, Fig. 5~a!# we only
need to estimate at small scales the vertical shift inF(n)/n
between the mixed signal@Fig. 5~d!# and a stationary signa
u( i ) with identical anticorrelations. This approach is va
for nonstationary signals where the fractionp of the anticor-
related segments is much larger than the fraction of the
related segments in the mixed signal@Fig. 5~a!#, since only
under this condition the anticorrelated segments can do
nateF(n)/n of the mixed signal at small scales@Fig. 5~d!#.

For components containing segments with positive co
lations (0.5,a,1) and fixed sizeW @Fig. 5~c!#, we observe
a similar behavior forF(n)/n, with collapse atsmall scales
(n<W) after rescaling byAp @Fig. 6~b!# ~for a.1, there are
exceptions with different rescaling factors, see Appendix!.
At small scales the values ofF(n)/n for components con-
taining segments with positive correlations are much lar
compared to the values ofF(n)/n for components containing
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an identical fractionp of anticorrelated segments@Fig. 6~a!#.
Thus, for a mixed signal where the fraction of correlat
segments is not too small~e.g.,p>0.2), the contribution at
small scales of the anticorrelated segments toF(n)/n of the
mixed signal@Fig. 5~d!# may not be observed, and the b
havior ~values and slope! of F(n)/n will be dominated by
the correlated segments. In this case, we must conside
behavior ofF(n)/n of the mixed signal at large scales onl
since the contribution of the anticorrelated segments at la
scales is negligible. Hence, we next study the scaling beh
ior of components with correlated segments atlarge scales.

For components containing segments with positive co
lations and fixed sizeW @Fig. 5~c!#, we find that atlarge
scales the slope ofF(n)/n is identical to that expected for
stationary signalu( i ) ~i.e., p51) with the same correlation
@solid line in Fig. 7~a!#. We also observe a vertical shift i
F(n)/n to lower values when the fractionp of nonzero cor-

FIG. 6. Dependence of the scaling behavior of components
the fractionp of the segments with identical local correlations, em
phasizing data collapse atsmall scales. The segment size isW
520 and the length of the components isNmax5220. ~a! Compo-
nents containing anticorrelated segments (a50.1) at small scales
(n<W). The slope ofF(n)/n is identical to that expected for a
stationary (p51) signal with the same anticorrelations. After re
caling F(n)/n by Ap, at small scales all curves collapse on t
curve for the stationary anticorrelated signal.~b! Components con-
taining correlated segments (a50.9) atsmall scales (n<W). The
slope of F(n)/n is identical to that expected for a stationary (p
51) signal with the same correlations. After rescalingF(n)/n by
Ap, at small scales all curves collapse on the curve for the stat
ary correlated signal.
7-8
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related segments in the component decreases. We find
after rescalingF(n)/n by p, at large scales all curves co
lapse on the curve representing the stationary correlated
nal u( i ) @Fig. 7~a!#. Since at large scales (n@W), the effect
of the zero segments of sizeW on the rms fluctuation func
tion F(n)/n for components with correlated segments is n
ligible, even when the zero segments are 50% of the com
nent @see Fig. 7~a!#, the finding of a collapse at large scal
indicates that the vertical shift inF(n)/n is only due to the
fractionp of the correlated segments. Thus, to determine
fraction p of correlated segments in a nonstationary sig
~which is a mixture of anticorrelated and correlated segme
@Fig. 5~a!#!, we only need to estimate at large scales
vertical shift inF(n)/n between the mixed signal@Fig. 5~d!#
and a stationary signalu( i ) with identical correlations.

For components containing segments with anticorre
tions and fixed sizeW @Fig. 5~b!#, we find that at large scale
in order to collapse theF(n)/n curves (n@W) @Fig. 6~a!# we

FIG. 7. Dependence of scaling behavior of components on
fraction p of the segments with identical local correlations, emph
sizing data collapse atlarge scales. The segment size isW520 and
the length of the components isNmax5220. ~a! Components con-
taining correlated segments (a50.9) at large scales (n@W). The
slope of F(n)/n is identical to that expected for a stationary (p
51) signal with the same correlations. After rescalingF(n)/n by p,
at large scales all curves collapse on the curve for the statio
correlated signal.~b! Components containing anticorrelated se
ments (a50.1) at large scales (n@W). There is a crossover to
random behavior (a50.5). After rescalingF(n)/n by Ap(12p),
all curves collapse at large scales.
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need to rescaleF(n)/n by Ap(12p) @see Fig. 7~b!#. Note
that there is a difference between the rescaling factors
components with anticorrelated and correlated segment
small @Figs. 6~a!–6~b!# and large@Figs. 7~a!–7~b!# scales.
We also note that for components with correlated segme
(a.0.5) and sufficiently smallp, there is a different rescal
ing factor ofAp(12p) in the intermediate scale regime~see
Appendix B, Fig. 10!.

For components containing segments of white noisea
50.5), we find no change in the scaling exponent as a fu
tion of the fractionp of the segments, i.e.,a50.5 for the
components at both small and large scales. However, we
serve at all scales a vertical shift inF(n)/n to lower values
with decreasingp: F(n)/n;Ap.

2. Dependence on the size of segments

Next, we study how the scaling behavior of the comp
nents depends on the size of the segmentsW. First, we con-
sider components containing segments with anticorrelatio
For a fixed value of the fractionp of the segments, we stud
how F(n)/n changes withW. At small scales, we observe
behavior with a slope similar to that for a stationary sign
u( i ) with identical anticorrelations@Fig. 8~a!#. At large
scales, we observe a crossover to random behavior~exponent
a50.5) with an increasing crossover scale whenW in-
creases. At large scales, we also find a vertical shift w
increasing values ofF(n)/n when W decreases@Fig. 8~a!#.
Moreover, we find that there is an equidistant vertical shift
F(n)/n when W decreases by a factor of 10, suggesting
power-law relation betweenF(n)/n andW at large scales.

For components containing correlated segments wit
fixed value of the fractionp we find that in the intermediate
scale regime, the segment sizeW plays an important role in
the scaling behavior ofF(n)/n @Fig. 8~b!#. We first focus on
the intermediate scale regime when bothp50.1 and W
520 are fixed@middle curve in Fig. 8~b!#. We find that for a
small fractionp of the correlated segments,F(n)/n has slope
a50.5, indicating random behavior@Fig. 8~b!#, which
shrinks whenp increases~see Appendix B, Fig. 10!. Thus,
for components containing correlated segments,F(n)/n ap-
proximates at large and small scales the behavior of a
tionary signal with identical correlations (a50.9), while in
the intermediate scale regime there is a plateau of rand
behavior due to the random ‘‘jumps’’ at the borders betwe
the nonzero and zero segments@Fig. 5~c!#. Next, we consider
the case when the fraction of correlated segmentsp is fixed
while the segment sizeW changes. We find a vertical shif
with increasing values forF(n)/n when W increases@Fig.
8~b!#, as opposed to what we observe for components w
anticorrelated segments@Fig. 8~a!#. Since the vertical shift in
F(n)/n is equidistant whenW increases by a factor of 10
our finding indicates a power-law relationship betwe
F(n)/n andW.

3. Scaling expressions

To better understand the complexity in the scaling beh
ior of components with correlated and anticorrelated s
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CHEN, IVANOV, HU, AND STANLEY PHYSICAL REVIEW E 65 041107
ments at different scales, we employ the superposition
~see@61# and Appendix A!. For each component we have

F~n!/n5A@Fcorr~n!/n#21@F rand~n!/n#2, ~7!

whereFcorr(n)/n accounts for the contribution of the corre
lated or anticorrelated nonzero segments andF rand(n)/n ac-
counts for the randomness due to ‘‘jumps’’ at the bord
between nonzero and zero segments in the component.

Components with correlated segments(a.0.5). At small
scalesn,W, our findings presented in Fig. 6~b! suggest that
there is no substantial contribution fromF rand(n)/n. Thus
from Eq. ~7!,

F~n!/n'Fcorr~n!/n;b0Apna, ~8!

where b0na is the rms fluctuation function for stationar
(p51) correlated signals@Eq. ~6! and @61##.

FIG. 8. Dependence of the scaling behavior of components
the segment sizeW. The fractionp50.1 of the nonzero segments
fixed and the length of the components isNmax5220. ~a! Compo-
nents containing anticorrelated segments (a50.1). At large scales
(n@W), there is a crossover to random behavior (a50.5). An
equidistant vertical shift inF(n)/n whenW decreases by a factor o
10 suggests a power-law relation betweenF(n)/n andW. ~b! Com-
ponents containing correlated segments (a50.9). At intermediate
scales,F(n)/n has slopea50.5, indicating random behavior. An
equidistant vertical shift inF(n)/n suggests a power-law relatio
betweenF(n)/n andW.
04110
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Similarly, at large scalesn@W, we find that the contribu-
tion of F rand(n)/n is negligible@see Fig. 7~a!#, thus from Eq.
~7! we have

F~n!/n'Fcorr~n!/n;b0pna. ~9!

However, in the intermediate scale regime, the contribut
of F rand(n)/n to F(n)/n is substantial. To confirm this we
use the superposition rule@Eq. ~7!# and our estimates fo
Fcorr(n)/n at small@Eq. ~8!# and large@Eq. ~9!# scales@65#.
The result we obtain from

F rand~n!/n5A@F~n!/n#22@b0Apna#22@b0pna#2

~10!

overlaps withF(n)/n in the intermediate scale regime, e
hibiting a slope of '0.5: F rand(n)/n;n0.5 @Fig. 9~a!#.
Thus,F rand(n)/n is indeed a contribution due to the rando
jumps between the nonzero correlated segments and the
segments in the component@see Fig. 5~c!#.

Further, our results in Fig. 8~b! suggest that in the inter
mediate scale regime,F(n)/n;Wgc(a) for fixed fraction p
~see Sec. VB 2!, where the power-law exponentgc(a) may
be a function of the scaling exponenta characterizing the
correlations in the nonzero segments. Since at intermed
scalesF rand(n)/n dominates the scaling@Eq. ~10! and Fig.
9~a!#, from Eq.~7! we findF rand(n)/n'F(n)/n;Wgc(a). We
also find that at intermediate scales,F(n)/n;Ap(12p) for
fixed segment sizeW ~see Appendix B, Fig. 10!. Thus from
Eq. ~7! we find F rand(n)/n'F(n)/n;Ap(12p). Hence we
obtain the following general expression:

F rand~n!/n;h~a!Ap~12p!Wgc(a)n0.5. ~11!

Here we assume thatF rand(n)/n also depends directly on th
type of correlations in the segments through some func
h(a).

To determine the form ofgc(a) in Eq. ~11!, we perform
the following steps.

~a! We fix the values ofp and a, and from Eq.~10! we
calculate the value ofF rand(n)/n for two different values of
the segment sizeW, e.g., we chooseW15400 andW2520.

~b! From the expression in Eq.~11!, at the same scalen in
the intermediate scale regime, we determine the ratio

F rand~W1!/F rand~W2!5~W1 /W2!gc(a). ~12!

~c! We plot F rand(W1)/F rand(W2) vs a on a linear-log
scale@Fig. 9~b!#. From the graph and Eq.~12! we obtain the
dependence

gc~a!5
ln@F rand~W1!/F rand~W2!#

ln~W1 /W2!

5H Ca2C/2, 0.5<a<1

0.50 for a.1,
~13!

whereC50.8760.06. Note thatgc(0.5)50.
To determine ifF rand(n)/n depends onh(a) in Eq. ~11!,

we perform the following steps.

n
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EFFECT OF NONSTATIONARITIES ON DETRENDED . . . PHYSICAL REVIEW E65 041107
~a! We fix the values ofp andW and calculate the value o
F rand(n)/n for two different values of the scaling expone
a, e.g., 0.5 and any other value ofa from Eq. ~10!.

~b! From the expression in Eq.~11!, at the same scalen in
the intermediate scale regime, we determine the ratio

F rand~a!

F rand~0.5!
5

h~a!

h~0.5!
Wgc(a)2gc(0.5)5

h~a!

h~0.5!
Wgc(a),

~14!

sincegc(0.5)50 from Eq.~13!.
~c! We plotF rand(a)/F rand(0.5) vsa on a linear-log scale

@Fig. 9~b!# and find that whenW[W1 /W2 @in Eqs.~12! and
~14!# this curve overlaps withF rand(W1)/F rand(W2) vs a

FIG. 9. ~a! Scaling behavior of components containing cor
lated segments (a.0.5). F(n)/n exhibits two crossovers and thre
scaling regimes at small, intermediate, and large scales. From
superposition rule@Eq. ~7!# we find that the small and large sca
regimes are controlled by the correlations (a50.9) in the segments
@Fcorr(n)/n from Eqs. ~8! and ~9!# while the intermediate regime
@F rand(n)/n;n0.5 from Eq.~10!# is dominated by the random jump
at the borders between nonzero and zero segments.~b! The ratio
F rand(W15400)/F rand(W2520) in the intermediate scale regime fo
fixed p and different values ofa, and the ratioF rand(a)/F rand(a
50.5) for fixedp andW5W1 /W2 . F rand(n)/n is obtained from Eq.
~10! and the ratios are estimated for all scalesn in the intermediate
regime. The two curves overlap for a broad range of values for
exponenta, suggesting thatF rand(n)/n does not depend onh(a)
@see Eqs.~11! and ~16!#.
04110
@Fig. 9~b!# for all values of the scaling exponent 0.5<a
<1.5. From this overlap and from Eqs.~12! and ~14!, we
obtain

Wgc(a)5
h~a!

h~0.5!
Wgc(a) ~15!

for every value ofa, suggesting thath(a)5const and thus
F rand(n)/n can finally be expressed as

F rand~n!/n;Ap~12p!Wgc(a)n0.5. ~16!

Components with anticorrelated segments(a,0.5). Our
results in Fig. 6~a! suggest that at small scalesn,W there is
no substantial contribution ofF rand(n)/n and that

F~n!/n'Fcorr~n!/n;b0Apna, ~17!

a behavior similar to the one we find for components w
correlated segments@Eq. ~8!#.

In the intermediate and large scale regimes (n>W), from
the plots in Figs. 7~b! and 8~a! we find that the scaling be
havior of F(n)/n is controlled byF rand(n)/n and thus

F~n!/n'F rand~n!/n;Ap~12p!Wga(a)n0.5, ~18!

wherega(a)5Ca2C/2 for 0,a,0.5 @see Fig. 9~b!#, and
the relation forF rand(n)/n is obtained using the same proc
dure we followed for Eq.~16!.

VI. CONCLUSIONS

In this paper we studied the effects of three different typ
of nonstationarities using the DFA correlation analy
method. Specifically, we consider sequences formed in th
ways: ~i! stitching together segments of signals obtain
from discontinuous experimental recordings, or remov
some noisy and unreliable segments from continuous rec
ings and stitching together the remaining parts;~ii ! adding
random outliers or spikes to a signal with known corre
tions, and~iii ! generating a signal composed of segme
with different properties, e.g., different standard deviatio
or different correlations. We compare the difference betwe
the scaling results obtained for stationary correlated sign
and for correlated signals with artificially imposed nons
tionarities.

~i! We find that removing segments from a signal a
stitching together the remaining parts does not affect
scaling behavior of positively correlated signals (1.5>a
.0.5); even when up to 50% of the points in these sign
are removed. However, such a cutting procedure stron
affects anticorrelated signals, leading to a crossover from
anticorrelated regime~at small scales! to an uncorrelated re
gime ~at large scales!. The crossover scalen3 increases with
increasing value of the scaling exponenta for the original
stationary anticorrelated signal. It also depends both on
segment size and the fraction of the points cut out from
signal: ~1! n3 decreases with the increasing fraction of c
out segments and~2! n3 increases with increasing segme
size. Based on our findings, we propose an approach to m

-

he

e

7-11



io
b

se

ha
a

a
e

i
be
al
ta
a
ca
ch
l—
. W
ke
ith
n
su

ca

eg
th
b
on
s

ry
F
r.

ar
ig
a

t o
c

it
tio
m

rre
e
ti
to

at
t

m
ho

ns

ce
o
a

for

s

ng

FA
n

l

ne
tic

s

CHEN, IVANOV, HU, AND STANLEY PHYSICAL REVIEW E 65 041107
mize the effect of the cutting procedure on the correlat
properties of a signal: When two segments that need to
removed are on distances shorter than the size of the
ment, it is advantageous to cut out both the segments and
part of the signal between them.

~ii ! Signals with superposed random spikes. We find t
for an anticorrelated signal with superposed spikes at sm
scales, the scaling behavior is close to that of the station
anticorrelated signal without spikes. At large scales, ther
a crossover to random behavior. For a correlated signal w
spikes, we find a different crossover from uncorrelated
havior at small scales to correlated behavior at large sc
with an exponent close to the exponent of the original s
tionary signal. We also find that the spikes with identic
density and amplitude may have a strong effect on the s
ing of an anticorrelated signal while they have a mu
smaller or no effect on the scaling of a correlated signa
when the two signals have the same standard deviations
investigate the characteristics of the scaling of the spi
only and find that the scaling behavior of the signal w
random spikes is a superposition of the scaling of the sig
and the scaling of the spikes. We analytically prove this
perposition relation by introducing asuperposition rule.

~iii ! Signals composed of segments with different lo
properties. We find the following.

~a! For nonstationary correlated signals comprised of s
ments that are characterized by two different values of
standard deviation, there is no difference in the scaling
havior compared to stationary correlated signals with c
stant standard deviation. For nonstationary anticorrelated
nals, we find a crossover at scalen3 . For small scalesn
,n3 , the scaling behavior is similar to that of the stationa
anticorrelated signals with constant standard deviation.
large scalesn.n3 , there is a transition to random behavio
We also find that very few segments with large stand
deviation can strongly affect the anticorrelations in the s
nal. In contrast, the same fraction of segments with stand
deviation smaller than the standard deviation of the res
the anticorrelated signal has much weaker effect on the s
ing behavior—n3 is shifted to larger scales.

~b! For nonstationary signals consisting of segments w
different correlations, the scaling behavior is a superposi
of the scaling of the different components—where each co
ponent contains only the segments exhibiting identical co
lations and the remaining segments are replaced by z
Based on our findings, we propose an approach to iden
the composition of such complex signals: A first step is
‘‘guess’’ the type of correlations from the DFA results
small and large scales. A second step is to determine
parameters defining the components, such as the seg
size and the fraction of nonzero segments. We studied
the scaling characteristics of the components depend
these parameters and provide analytic scaling expressio
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APPENDIX A: SUPERPOSITION RULE

Here we show how the DFA results for any two signalf
and g @denoted asF f(n) and Fg(n)# relate with the DFA
result for the sum of these two signalsf 1g @denoted as
F f 1g(n), wheren is the box length~scale of analysis!#. In
the general cases, we finduF f2Fgu<F f 1g<F f1Fg . When
the two signals are not correlated, we find that the followi
superposition ruleis valid: F f 1g

2 5F f
21Fg

2 . Here we derive
these relations.

First we summarize again the procedure of the D
method@3#. It includes the following steps: starting with a
original signalu( i ) of lengthNmax, we integrate and obtain
y(k)5( j 51

k @u( j )2^u&#, where ^u& is the mean ofu( i ).
Next, we dividey(k) into nonoverlapping boxes of equa
lengthn. In each box we fit the signaly(k) using a polyno-
mial functionyn(k)5a01a1x(k)1a2x2(k)1•••1asx

s(k),
wherex(k) is thex coordinate corresponding to thekth sig-
nal point. We calculate the rms fluctuation functionF(n)
5A(1/Nmax)(k51

Nmax@y(k)2yn(k)#2.
To prove the superposition rule, we first focus on o

particular box along the signal. In order to find the analy
expression of best fit in this box, we write

I ~a0 , . . . ,as!5 (
k51

n

$y~k!2@a01•••1asx
s~k!#%2,

~A1!

where am ,m50, . . . ,s, are the same for all points in thi
box. The ‘‘best fit’’ requires thatam ,m50, . . . ,s satisfy

]I

]am
50, m50, . . . ,s. ~A2!

Combining Eq.~A1! with Eq. ~A2! we obtains11 equations

ym5a0tm01a1tm11•••1astms, m50, . . . ,s,
~A3!

where

ym5 (
k51

n

y~k!xm~k!, tm j5 (
k51

n

xm1 j~k!, j 50, . . . ,s.

~A4!

From Eqs.~A3! we determinea0 ,a1 , . . . ,as .
For the signalsf, g, and f 1g, after the integration in each

box we have

f m5a0tm01a1tm11•••1astms, m50, . . . ,s,

gm5a08tm01a18tm11•••1as8tms, m50, . . . ,s,

~ f 1g!m5a09tm01a19tm11•••1as9tms, m50, . . . ,s,

~A5!
7-12
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where f m , gm , and (f 1g)m correspond toym in Eqs.~A3!.
Comparing the three groups of equations in Eqs.~A5!, we

find that when we add the first two groups together, the
side becomesf m1gm5( f 1g)m , which is precisely the left
side of the third group of equations. Thus we find

am9 5am1am8 , m50, . . . ,s ~A6!

and for each pointk in every box, the polynomial fits for the
signalsf, g, and f 1g satisfy

~ f 1g!n~k!5 f n~k!1gn~k!. ~A7!

This result can be extended to all boxes in the signals.
the signalf 1g we obtain

F f 1g
2 5

1

Nmax
(
k51

Nmax

@ f ~k!2 f n~k!#21@g~k!2gn~k!#2

12@ f ~k!2 f n~k!#@g~k!2gn~k!#. ~A8!

After the substitutions f (k)2 f n(k)5Yf(k) and g(k)
2gn(k)5Yg(k), we rewrite the above equation as

F f 1g
2 5

1

Nmax
F (

k51

Nmax

@Yf~k!#21 (
k51

Nmax

@Yg~k!#2

12 (
k51

Nmax

Yf~k!Yg~k!G5F f
21Fg

2

1
2

Nmax
(
k51

Nmax

Yf~k!Yg~k!. ~A9!

In the general case, we can utilize the Cauchy inequa

U (
k51

Nmax

Yf~k!Yg~k!U<S (
k51

Nmax

@Yf~k!#2D 1/2S (
k51

Nmax

@Yg~k!#2D 1/2

~A10!

and we find

~F f2Fg!2<F f 1g
2 <~F f1Fg!2⇒uF f2Fgu<F f 1g<F f1Fg .

~A11!

From Eqs. ~A3! for m50, in every box we have
(k51

n y(k)5(k51
n yn(k). Thus we obtain (k51

NmaxYf(k)

5(k51
NmaxYg(k)50, whereYf(k) and Yg(k) fluctuate around

zero. WhenYf(k) andYg(k) are not correlated, the value o
e

n-

04110
ft

or

y

the third term in Eq.~A9! is close to zero and we obtain th
following superposition rule:

F f 1g
2 5F f

21Fg
2 . ~A12!

APPENDIX B: STRONGLY CORRELATED SEGMENTS

For components containing segments with stronger p
tive correlations (a.1) and fixedW520, we find that at
small scales (n,W), the slope ofF(n)/n does not depend
on the fractionp and is close to that expected for a stationa
signalu( i ) with identical correlations~Fig. 10!. Surprisingly
we find that in order to collapse theF(n)/n curves obtained
for different values of the fractionp, we need to rescale
F(n)/n by Ap(12p) instead ofAp, which is the rescaling
factor at small scales for components containing segm
with correlationsa,1. Thusa51 is a threshold indicating
when the rescaling factor changes. Our simulations show
this threshold increases when the segment sizeW increases.

For components containing a sufficiently small fractionp
of correlated segments (a.0.5), we find that in the interme
diate scale regime there is a crossover to random beha
with slope 0.5. TheF(n)/n curves obtained for differen
values ofp collapse in the intermediate scale regime if w
rescaleF(n)/n by Ap(12p) ~Fig. 10!. We note that this
random behavior regime at intermediate scales shrinks w
the increasing fractionp of correlated segments and, as e
pected, forp close to 1 this regime disappears~see thep
50.9 curve in Fig. 10!.

FIG. 10. Dependence of the scaling behavior of components
the fractionp of the segments with strong positive correlationsa
51.2). The segment size isW520 and the length of the compo
nents isNmax5220. After rescalingF(n)/n by Ap(12p), all curves
collapse at small scales (n,W) with slope 1.2 and at intermediat
scales with slope 0.5. The intermediate scale regime shrinks whp
increases.
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